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Abstract

Parameters for a function modeling chemical erosion of carbon as a function of particle energy and flux as well as
target temperature are determined from the available data. The analysis is based on Bayesian inference and provides
posterior estimates of parameters, erosion yields and associated error margins. The model function incorporates the flux
dependence via a time constant for hydration. The present analysis yields a hydration time of 0.22 m s independent of
surface temperature and isotope mass. © 2001 Elsevier Science B.V. All rights reserved.

1. Introduction

Chemical erosion due to hydrogen ion bombardment
is the dominant erosion process for carbon-based plas-
ma facing materials in thermonuclear fusion devices [1].
In today’s fusion experiments in general large areas of
the main vessel walls are covered by carbon tiles and the
areas of direct plasma-wall contact, such as divertor
plates or limiters, are made from carbon-fiber composite
(CFC) material [2-4]. While the vessel walls are subject
to low flux neutral irradiation (~10%°/m? s) and remain
at ambient temperature, the divertor plates experience
ion fluxes up to 10**/m? s and, consequently, elevated
surface temperatures will occur [5]. In both cases, the ion
energy distribution will be broad, with highest fluxes in
the 10-50 eV range. In spite of the low fluxes the im-
purity content of the plasma will be dominated by wall
erosion due to the large area of the walls. The estimated
erosion at the divertor plates leads to severe lifetime
problems of the components. Both erosion processes
result in the deposition of carbon layers within the ma-
chine retaining unacceptably high inventories of hydro-
gen isotopes [6].

In the low flux regime, i.e., below 10°/m? s, the
mechanism of chemical erosion is reasonably well un-
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derstood. From ion beam experiments [7] and experi-
ments using thermal hydrogen atoms [8] it could be
established that the total chemical erosion results from
different basic processes: within the ion range carbon
atoms with unsaturated bonds will be fully hydroge-
nated already at room temperature. The concentration
of available bonds, Cy, may be enhanced by radiation
damage processes if the ion energy exceeds about 15 eV.
As the temperature is increased thermal bond-breaking
processes become possible and CH; or C,H, radicals are
released resulting in the thermal erosion process, Yiherm-
A further increase in temperature enables hydrogen loss
due to hydrogen molecule formation in Eley-Rideal
processes and chemical erosion decreases. Thus, a
maximum of chemical erosion, Yiem, 1S established at
intermediate temperatures ranging from 500 to 900 K
depending on ion flux. At room temperature no thermal
release of hydrocarbon radicals is possible. However,
these radicals are bound to the surface with a much
lower binding energy than non-hydrogenated carbon
atoms. Consequently, surface radicals can be sputtered
already at ion energies well below the threshold energy
for physical sputtering of carbon and from the available
data a threshold energy of 2 eV can be estimated for
chemically enhanced physical sputtering, Yy.r. These
processes have been described analytically and formulae
for Cy, Yiperm and Yy,¢ are given in [7].

At high fluxes @, such as experienced in fusion de-
vices, there was indication from scattered data that the
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chemical sputtering yield decreases with ion flux [9]. The
data base did not allow, however, one to draw quanti-
tative conclusions on such a flux dependence [10]. On the
other hand, deposition experiments for hydrogenated
carbon layers indicated that hydrogenation may include
steps requiring times of the order of ms, thus limiting the
hydrogen content of films if the deposition rate gets too
fast [11]. Such a time dependent step would conse-
quently reduce the concentration of hydrocarbon radi-
cals in the surface, limit the eroded molecule flux to the
flux independent rate at which the radicals can be
formed and lead to a 1/® dependence of the chemical
erosion yield at high fluxes. The analytic description in
[7] includes this assumption of a flux dependence.

Within the past two years new experimental efforts
have been made to investigate the flux dependence, both
at room temperature and around the maximum tem-
perature for chemical erosion, Ty.x. In plasma simula-
tors [12,13] ion fluxes of the order of 10%/m? s are
reached and new data are available from dedicated ex-
periments in the divertors of tokamaks [14,15]. In most
of these measurements an estimate of the error of the
resulting erosion yield was given including the determi-
nation of the incident ion flux, of the spectroscopic de-
termination of the CD band intensity and of the
calculation of the emitted hydrocarbon flux from the
measured CD band. In the present paper, these new data
are evaluated on the basis of the analytic model in-
cluding the plausible assumption of the yield decrease at
high fluxes. The functional form of the model [7] is re-
tained and fitted to the data with only two free param-
eters: a constant ¢, effectively determined by the low flux
data from ion beam experiments and the parameter /,
determining the flux where the strong flux dependence
sets in. Bayesian probability theory is employed in order
to determine these parameters. From the bulk of the
published low flux data the weight loss results have been
selected [16] as the most simple and reliable total yields,
since these data require no further calibration factors.
Such factors are necessary for mass spectroscopy and
optical emission spectroscopy. lon energies near 30 eV
are selected as typical for limiter application.

2. Bayesian rules

This section is intended to fix the nomenclature and
definitions. For a more detailed introduction to Baye-
sian probability theory we refer interested readers to
excellent papers in the literature which cover this subject
[17-20].

Bayesian inference rests on the application of two
rules. The first is the product rule which allows to ex-
pand the probability density function P(H,D|I) de-
pending on the two variables H and D conditional on
further information 7 into two simpler factors

P(H,D|I) = P(H|I)P(D|H,I). (1)

The first factor P(H|I) depends now only on the variable
H conditional on the previous background information
1. The second factor depends also on a single variable D
but the condition has been extended from a knowledge
of 7to both H and I. Let us identify H with hypotheses
(physics) and D with data. Eq. (1) allows of course the
alternative expansion due to symmetry in the variables
on the left-hand side

P(H,D|I) = P(D|I)P(H|D,I). (2)
Combination of (1) and (2) yields Bayes’ theorem

P(H|I)

P(HID,D) = 550

P(D|H,I). (3)

Bayes’ theorem represents a recipe for learning. It tells
us how to update our knowledge of physics P(H|/) in the
light of data obtained from a suitably designed experi-
ment P(D|H,I) into posterior knowledge P(H|D,I).
P(H|I) is called the prior on the hypothesis H. P(D|H,1)
constitutes the theory of the experiment, e.g., the pre-
diction of the data to be measured assuming the physics
H to be known. This probability density is called the
sampling distribution of the data when regarded as a
function of D and is normalized in these variables, i.e., it
is the predictive distribution for possible data sets given
the same hypotheses H. Alternatively it is called the
likelihood when considered as a function of H and the
data are held constant. P(H|D, 1) is called the posterior
probability distribution of H which combines the
knowledge available prior to taking the data D with the
result of the experiment. P(D|I) finally is called the ev-
idence or the prior predictive value or the global likeli-
hood of the entire class of hypotheses {H}. We prefer
the latter term because P(D|I) is not independent of the
other probabilities by virtue of the second rule of
Bayesian probability theory, the sum rule. It states that

Pwm:/mmmmw
:/PWMHMEU&[ (4)

The global likelihood P(D|I) results after (4) from an
integration over all possibilities of H. In that case H is
characterized by a set of parameters the symbolic inte-
gration over H means in practice integration over pa-
rameter space. P(D|I) plays a crucial role in the
comparison of different models given a data set D. Let us
specify the background information 7 further by models
M, or M, with associated different parameter sets H;
and H,. Bayesian probability theory allows one to an-
swer the important question whether and to what degree
model M, is to be preferred over model M, in the light
of the experimental data D. To this end we calculate
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P(M;|D,I), which by application of Bayes’ theorem is
given by

P(Mi|1)P(DIM;, 1)

(5)
If we take the ratio of (5) for i = 1 and i = 2 we obtain
the ‘odds ratio’

P(M/[D.I) _ P(My|1) P(DIM,.]) »
P(MGID.1) ~ P(ML|T) P(DIMy,1)°

The first factor on the right-hand side is called the prior
odds. It specifies via a real number the experts’ belief
about how much model M, is to be preferred over model
M,. If this number deviates very much from one there is
usually very little motivation for carrying out an ex-
periment. At least it will be difficult to find funding for
it! So most of all experimental work relates to the case
that we have no reason to assign different values to
P(M;|I) and P(M,|I). The odds ratio is then entirely
determined by the second, the so-called Bayes factor.
The required probability densities to calculate this factor
are obtained from a specification of the parameters H;
entering model M; by application of the sum rule

P(DIM,, 1) = / P(D, H,|M,, 1) dH,. (7)

Further mathematical manipulations of probabilities in
the rest of this paper are based on the employment of the
basic rules (1) and (4).

3. The likelihood

Consider the case where two sets of data § and 4 of
measured erosion yields are available, were taken at
fluxes x and X, and have standard deviation ¢ and X.
The vector symbol comprises the whole data set, i.e.,
o= @1,...,5%}, where N;(N,) is the number of the
data 0(4). The usual situation in experimental physics is
that x and X cover different ranges with everything be-
tween no overlap and full overlap and that 6 and 4
suffer from different calibrations. Our problem is then to
determine model parameters on the basis of all available
data. As already mentioned in the introduction the
model function is fully specified by a linear parameter ¢
establishing the scale of the fit function and another
non-linear parameter A related to the flux at which the
erosion yield starts to decrease as a function of flux. Let
us further introduce a calibration parameter y which,
when apElied to the data set 4, rescales it on the same

scale as 0. All this information can be condensed in the
likelihood

p(g,z
:P(S

The right-hand side of (8) follows from the product rule
and may be further simplified. Of course the probability

;,},E,E,C,;,,V,M,z)

},}7E7E7c,z7%1)1)(4

of the data set J is independent of the flux X used to
collect the data 4 in another experiment. By the same
token, P(4]8,x,X,0,%,¢c,4,9,M,I) is independent of
x, ¢ and ¢ for a truly independent experiment. More-
over, we have chosen the convention that the data set
6 does not require recalibration and therefore
P(d|x,X,0,%,¢,Av,1) is also independent of . In the
following we shall simplify our notation by simply
suppressing conditioning variables which make no sense
on the grounds of logical independence. The simplified
Eq. (8) is then

P(E, A%, X,5,%,¢,47, M,])

:P<5 E,E,C,A,I)P(Z

We now model our data set 0 as

}7 2707 j'7’))7 M’I)' (9)

3 = cp(xi, A) + o, (10)

where «; denotes the error associated with the mea-
surement of J; and the expectation value (o;) of o; is of
course zero. We assume further, that the variance of the
true error o; is (o?) = ¢?. This allows us to express the
first factor in (9) by application of the principle of
maximum entropy as [20]

P(E
_ men{ 30wl [}

For the second factor in (9) we shall consider two dif-
ferent cases. Let us first assume that the optical system is
absolutely calibrated for both the hydrogen and the CH
band. In this case the conversion of the hydrogen spec-
troscopic data to flux values is free of error due to the
favorable atomic data situation for hydrogen, while
cross-section data and optical transition probabilities for
CH, are less well-known and the conversion of CH band
emissions to erosion data may suffer from a bias which
we account for by the factor y (model M;). We then have

74) = co(Xj, 2) + B (12)

X,0,¢, )L,])

and consequently assuming (f;) = 0 and (ﬁf) = X7 the
likelihood function becomes
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p(z‘;,g,c,i,y,z)

= Hz Nor eXp{ —%[M; —cw()(f»)~)]2/zf}~
(13)

However, with erosion data collected in fusion machines
there is another conceivable situation. The optical sys-
tem used to record hydrogen and CH band emissions
may suffer from a calibration error which translates into
a common recalibration factor y for both the hydrogen
flux X; and the erosion yield 4; (model M,). In this case
we would have to model our data according to

YA = cop(X), 2) + B (14)

The two formulations (12) and (14) for the data set 4
constitute the two models M; and M, which we shall
compare by calculating the odds ratio (6).

We have nearly, but not quite, completed the speci-
fication of the likelihood function. Both (11) and (13)
require the knowledge of the true errors o; and X;, re-
spectively. Except from numerical simulations these are
hardly ever known. What we may know (and do know
in the present case) are experimental estimates of the
true errors o; and ~; which we denote by s; and S, re-
spectively. These estimates may come close to the true
values as for example in counting experiments where
Poisson statistics apply. Quite often, however, we en-
counter the case that the quoted experimental error is
either obviously too large, or the scatter of equivalent
data is much larger than expected from the size of the
quoted error. We usually talk about outliers in the latter
case. They are particularly harmful since an outlier with
a small specified estimate of the true error will strongly
bias the conclusions drawn from the data set. Outlier
tolerance in our inferences may be obtained in the fol-
lowing way [21]. Let us assume that the probability
density for the true error ¢ is given in terms of two
parameters u and v by the distribution

2v
i 1
P(O-ilsivlhvvl)iz 'u (Sl> e—!“ /Uz (15)

( ) Oi 73

The solid curve in Fig. 1 displays (15) as a function of g/
for values of the conditioning parameters u, v which we
shall fix now. Our first obvious requirement is that
(o) = s. That means that we assume that the experimenter
has tried hard and supplied a bias free error estimate. The
expectation value (o) is then given in terms of 1 and v

Q_\/— (”_(1)/2)':1. (16)

In order to specify p and v independently we need a
further condition and choose the variance (46?) of (15)
which turns out to be

4

1,1)
N

1/mt,v=

1,u=
N

p(ols

(6

Fig. 1. Solid line: Probability distribution for the renormalized
error ¢. The mean (o) =1 is given by the dashed line. The
shaded area depicts the shortest 66% confidence interval.
The histogram gives the distribution in the error correction for
the data of Fig. 3.

= ~1. (17)

We now choose to allow for large discrepancies between
scattered data and specified errors and let (46?)/s? tend
to infinity. This fixes v = 1 and in consequence u = 1/x.
We are now ready to eliminate the true errors ¢ from
(11) by application of the sum rule (4) which allows us to
reformulate the likelihood entirely in terms of measured
data and model parameters. For a single term of the
product (11) we obtain

P(6i|xi7si7c7)“7ﬂ7v71) :/P(5i70i|xi7si7c7/17”7‘)71)(10

:/P(O-i|si7.uav7[)

x P(6;|0:,%;,¢, 4,1)da, (18)

which may be readily integrated to yield with the above
values of u and v

P(él |Xi7Si,C7;L71)

=z o e o ot 2 }/

(19)

Similar expressions result in the case of (13). This is then
the final form of our likelihood function which forms the
basis for all our subsequent conclusions. Though our
formulation is for reasons of simplicity only for data sets
0 and A (with calibration parameter y), the generaliza-
tion to the case of multiple data sources (4y,7,) does not
pose any difficulties.
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4. Posterior estimates

In this section, we shall employ Bayes’ theorem to
infer parameters of the model functions, expectation
values of the true errors of the measurements, and pre-
dictive values of the erosion, given flux, temperature and
energy as well as the associated error. Let us begin with
parameter estimation. From Bayes’ theorem we obtain
the posterior distribution of the parameters conditional
on all experimental data

P(C7 )"75‘57;7§’Zk7‘)}k7§(71)
P<c7 A,?‘I)P(& A

P(g,Zk

**is*;mz)

I

;7 §7£7§f7 M71)
(20)

where 4, stands for Zl, oo A ()?,{,_ka likewise). In order
to carry on we now have to specify the prior P(c, 4, y|I).
Since all the variables are independent this factorizes to

P(c, ;J‘z) - P(c|I)P(M])ﬁP(yk|I). (21)

Our prior knowledge about ¢ and /4 is limited to the
positivity constraint and we therefore use flat priors
extending over the ranges 0 < ¢ < ¢pax and 0 < A < Apax-
For the choice of y, we are not that ignorant, since a
priori we can assume that each measurement is per-
formed under best experimental conditions and should
be assigned with an expectation value for the calibration
factor of (y,) =1, where 0<y, < co. The maximum
entropy distribution under these assumptions is an ex-
ponential function

P(pll) = e (22)

This completes the specification of the posterior distri-
bution of the parameters given all the data and we can
proceed to the evaluation of the expectation values and
associated variances of ¢, 4,y;,...,7¢. Let ¢ be any of
¢, A1, -,7k. We then have

(& = /d)»/dc/deg’"

K —~
ehon(sd

“)?s‘mmz)
X

Cmax )VmaxP (ga Zk

;7 E\‘7“§](7LSAVI;7M7I)
23)

from which we calculate in particular (¢) and, in order
to determine the variance, (£*). The bracketed term
under the integral (23) is a normalized density in
¢, A, 7, which we use as the sampling density to eval-
uate the expectation values (") by Markov Chain

Monte Carlo (MCMC) techniques. Note that it is un-
important at this step whether we know the normaliza-
tion (which we do not!) or not when applying the
Metropolis Hastings algorithm for the MCMC.

Having obtained posterior values of the parameters
and the associated errors we could proceed and compare
the model function with the parameters fixed to their
posterior expectation values ¢, J, 7, to the experimen-
tal data. This is instructive but it is not the posterior
inference on the erosion yield given flux, sample tem-
perature, particle energy and kind. What we really want
is the expectation value of the erosion yield (Y (Z2)),
where Z summarizes the experimental conditions, and of
course the uncertainty associated with this estimate. The
respective moments are calculated from the distribution
P(Y|Z, 6,§,§,Ak7Xk7Sk71). The latter is obtained using
the sum rule as

P(Y‘ZS,%E,&)&@,Q
=/P(Y,c,,1,§
:‘/P(C7i7§ 57;75\7;,{’};7‘54'[;71)

x P(Y‘Z , 1,1) dedidy. (24)

27 37 ;7 Ea Zk7)?k:‘§/;al) dCdide

The first factor under the integral (24) is already known
from above (20)—(22) while the second is simply a delta
function

P(Y)Z , 2,1) = 5(Y — co(x, T, E, 7)), (25)

where we have explicitly resolved Z into flux x, sample
temperature 7 and particle energy E. The J-function
form of (25) implies a complicated distribution (24).
This complexity is unimportant since we are only in-
terested in the expectation value (Y) of Y and the as-
sociated variance (4Y?). Performing the Y-integration
to obtain the moments first, we obtain exactly formula
(23) with ¢ =co(x,T,E,2). This is of considerable
practical value since it means that (¥) and (4Y?) may be
obtained in the same Monte Carlo run as the parameters
¢, 4, 7. The full curves and the shaded bands in 3 and 4
display predicted erosion yields and associated confi-
dence ranges for conditions given in the captions. It is
important for applications to note that the correct
Bayesian prediction of the erosion (Y) coincides with the
model function evaluated at the posterior values of the
parameters within error margin. For further discussion
see Section 4 below.

Next we focus our attention on the measurement
errors. In order to infer estimates of the true measure-
ment error o; (or Y;;) we need the distribution
P(c,Z|D,I), where D summarizes (3, x),(4;,X1),...,
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(AK,)?K), which by virtue of Bayes theorem may be
written as

P(E, fk‘l)

P(agk@]) :P<B‘M,I)

P(B‘E,fk,M,l). (26)

We employ marginalization in order to recover the
original likelihood

P(B

E? flm M7 1)
_ /p(B,c,z,ﬂE,fk,/) d%yded’/P(DIM, 1)

:/P(c,A",?‘])P(B‘E,fk,c,i,?,M,])
x d®ydedi/P(DIM, I). (27)

We are now ready to calculate (o) the posterior ex-
pectation value of the error of measurement J; by
plugging together (27) and (26). We find that

2y 1/2
25 1 (6 —colx;, A))
<ai>ﬁ<{n+2s[2} > (28)

where the average is again over the same density func-
tion as in (23). o

In all the previous calculations P(D|I) = P(J, 4; | X,
E,Xk,Sk, M, I) entered formally, but we had no need to
compute the numerical value of this function. Remem-
ber, however, that we started with two different models
given by (12) and (14) and that comparison of these two
models requires according to the odds ratio (6) the
knowledge of just this quantity. A general procedure for
likelihood functions of arbitrary structure has been
given recently [22] and employed in [23]. Direct evalua-
tion of the Bayes factor has also been described in the
literature [24]. The likelihood in the present problem has
a simple structure which suggests a simpler procedure.
Simultaneously with all the other expectation values we
calculate (&;&;) with & = (¢, 4, ?) from (23) and thereby
obtain the covariance matrix C with elements

Cir = (&iSk) — (&) (&), (29)

which defines a Gaussian approximation to the sampling
density in (23) via

- 1 (éi - <éi>)(ék - <5k>)
R e

(30)
G, is the value of the likelihood at (E), the posterior
estimate of the parameters. In this approximation the
prior predictive value or global likelihood becomes

P(E, 4,

},E,)Z,S[,MJ) — Gy(2m) | det |1,

(31)

There is a simple way to improve over this approxima-
tion [25]. From (23) taking n = 0 it follows that

P(S,Z,. ;,E,)?,-,E,MJ) :/di/dc/dy’(

e~ > y‘P(g, Zk

Crax A G* (E, g)

;733)?10‘§kvcv /17;7M71)
X

X G (E,g). (32)

The bracketed term on the right-hand side of (32) is now
expected to be a smoothly varying function of ¢, 4, 7
and the integral may be performed by sampling from the
normalized Gaussian G"(E7 C). In the present work we
have employed the Gibbs sampler [24] since it is simple
and easy to derive full conditional distribution from a
multivariate Gaussian. With the obtained values for the
global likelihoods (32) we can finally evaluate the odds
ratio (6). The results are presented in Section 6.

5. Empirical model function

We now come to the assignment of the yield function
Yiot = ¢po(@, ¢). For a long time [26-28] the decrease in
yield with increasing flux was empirically described by
an inverse function with power ¢, i.e.,

Vule,) = (;) (33)

where @, is a normalization constant in order to have
dimensionless units. This implies that the erosion would
ever increase for vanishing flux. However, the erosion
yield does saturate for smaller fluxes and finally becomes
constant. Therefore, an empirical model function should
rather read

1

1+ (i)
P
In the next section we will use a sophisticated model
obtained from analytical considerations with the same
flux dependence, but without an additional exponent e.
Our interest in this section is therefore to clarify, if a fit
to the data with Eq. (34) does indicate the necessity of
this further parameter.

In order to achieve this three different data sets are
examined. The expectation values of the model param-
eters (g, @) are calculated within Bayesian probability
theory, while the value of ¢ is determined from the low

Yiot(c,8) = ¢ (34)
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flux data provided by the high current source (HCS
[16]). No recalibrations of the data sets are taken into
account. The result for the first data set, which com-
prises deuterium data from HCS, PSI-1[12] and PISCES
[13], are shown in Fig. 2. The exponent computes to
() =0.79 £ 0.12. The pronounced flux dependence of
the erosion yield results mainly from the HCS and PSI-1
data. Due to the large error bar of the PISCES data it is
not possible to draw any conclusions on a functional
dependence, although they still contribute in defining a
range where the model function has to pass through. As
well as for the second data set (deuterium data from
HCS and the divertor region of ASDEX Upgrade, not
shown) (¢) =0.90 +0.21 and the third (hydrogen data
from HCS and ASDEX Upgrade, not shown)
(e) = 1.5+£0.3, the exponent results in values close to
one. So from this results we argue, that there is fortu-
nately no need for an additional exponent assigned to
the yield dependence on the flux, since any value dif-
ferent from ¢=1 would cause severe interpretation
difficulties.

Though more data are available from the HCS in the
first data set, we could only focus on those which have
the same energy of the incident ions as the PSI-1 and
PISCES data, i.e., Ey = 30 eV. Even worse, the same
restriction reduces, e.g., in the second data set the
number of the available ASDEX Upgrade data to one
fourth of the total set. A far better way is therefore to
incorporate the incident ion energy in a model which
considers the physical processes of the erosion and thus

51

10

<2

10

Chemical Erosion Yield [Cion]

<3
1 I I I
10 19 20 21 22 23

® [1/mzs]

Fig. 2. The chemical erosion yield obtained by a fit to the
empirical model of Eq. (34). Surface temperatures are around
Tmax- The circles are data from the high current source [16],
triangles depict the PSI-1 [12] data and squares are due to the
data from PISCES [13]. Error bars show the assigned experi-
mental error. The solid line represents a fit with &= 0.79
(P =32 x 10%", ¢=0.0856). The gray shaded area is the
confidence range.

allows to include data taken under slightly different
conditions (e.g., £y between 20 and 50 eV, temperatures
between 300 and 350 K) in the determination of the
posterior distribution. This is done in the next section.

6. Results and discussions of the full model

The described mathematical treatment is applied to
the evaluations of the flux dependence of chemical ero-
sion of graphite under hydrogen irradiation. The set ¢
was chosen to be the data obtained from ion beam ir-
radiation of carbon samples and weight loss measure-
ment of the target [16]. These data are to be considered
as correctly calibrated, since the measurement method is
the most simple one and produces reliable total yields.
At large ion fluxes three sets of data were chosen, either
from plasma simulators [12,13] or from measurement in
the divertor of the fusion experiment ASDEX Upgrade
[14] where the eroded molecule flux was determined
spectroscopically from the CH band intensity. In view of
the uncertainties in the evaluation of the eroded CHy4 or
C,H, flux from the CH band intensity, a calibration
parameter y, was introduced as fitting parameter (model
M,). A second approach assumed a calibration error of
the spectrometer (model M,) and uses the same cali-
bration parameter y, also to the determination of the
incident hydrogen flux obtained spectroscopically from
the H, line. Both choices for the calibration parameter
v, are finally examined in the model comparison.

As hypothesis H in the Bayesian treatment the for-
mulae for the chemical erosion yield Y, of [7] have been
taken which include the 1/@ flux dependence at high ion
fluxes as obtained from the free fit to the data. The range
of energies considered in the present treatment allows to
neglect physical sputtering otherwise included in the
weight loss data. The formulae including the fitting pa-
rameters ¢ and A = 1/®, read schematically

1
1+ 10"

Ylol(c7 )V) = CYChem(E> T: (D) (35)

The flux dependence of Y., is very weak in comparison
with the last term. This last term gives the concentration
of hydrocarbon radicals at the surface and results from
the assumption that the hydrogenation of surface atoms
to radicals, which can subsequently be eroded under ion
irradiation, is limited by a time constant t. The param-
eter A, which characterizes the flux where the week flux
dependence of Y, given by Yohen turns into a 1/@ flux
dependence, is dependent on the rate at which radicals
are removed from the surface and the hydration time 7.

Figs. 3 and 4 show the resulting fit of the model
function to the available data. Fig. 3 shows data ob-
tained at temperatures close to the maximum of chem-
ical erosion, Tp.x, in the energy range 20-50 eV.
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Fig. 3. Dependence of the chemical erosion yield on ion flux @
for surface temperatures around 7y,,x. The circles are data from
the high current source, where the full symbols represent the
subset corresponding to £y = 30 eV. The experimental outcome
of PSI-1 is given by open triangles. The data were corrected by a
factor of y; = 0.83 to result in the filled triangles. The same
representation was chosen for the PISCES data (open and filled
squares), where the factor is p, = 0.41. Error bars show the
assigned experimental error. The Bayesian result, shown by the
solid line is the fit of the yield for £, = 30 eV and a temperature
of 600 K. The gray shaded area is the confidence range.
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Fig. 4. The same as Fig. 3, but for 7 around room temperature.
The upper (lower) curve represents erosion with deuterium
(hydrogen) [14]. Again the circles (squares) are data at 7' = 300
K from the high current source, where the full symbols repre-
sent the Ey = 30 eV subset. The ASDEX data at T = 350 K are
depicted by triangles showing up (down). Here already the
renormalized data are shown, where the full symbols represent
25eV <Ey; <35 eV. The correction factor is y=1.13
(y = 0.97). Both fits (solid line) were obtained for Ey = 30 eV
and a temperature of 350 K.
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Spectroscopic data at high ion flux was always at
Ey =30 eV and the evaluation has been made for
Ey = 30 eV (solid data points for ion beam data) while
the evaluation of points deviating from 30 eV (open data
points for ion beam data) took the energy dependence of
Yenem Into account [7]. Open symbols for the spectro-
scopic data denote the published values 4, full symbols
after multiplying with the calibration parameter y,. For
a judgement of the quality of the fit (solid curve in Figs.
3 and 4) only the full symbols should be considered.
Though the full Bayesian approach giving the expecta-
tion value for Y, is the correct solution, it is important
to note that the model function evaluated with the
posterior values of the parameters provides us with a
hardly distinguishable result. This is due to the large
number of data and simplifies the situation a lot, since
one can calculate the total yield from the model function
by just inserting (c) and (). With these two values and
the use of model function (12) it is now possible to
compute any Y, in the supported flux range (10"—
10*/m? s), a fact which is of particular interest for the
modeling of carbon erosion in ITER. Table 1 gives the
results for these parameters and the calibration factors
7, as well as the odds ratio, distinguishing between the
two models in applying the calibration parameter y, as
outlined in section 6. This odds ratio does not deviate
largely from unity, and did not give any reason of de-
ferring from the statement of the experimentalists, that
the correction factor should be applied to the eroded
atom flux only, rather than to the incident hydrogen flux
and eroded atom flux. Therefore, the results depicted in
Figs. 3 and 4 refer to the first model (12), where the
calibration factor is only applied to the yield data, y,4;.
Since the calibration factor y, provides the model with a
further degree of freedom, the linear factor ¢ is mainly
determined by the ion beam data ¢ which were taken to
be correctly scaled. The calibration factors are 0.83 for
the data from [12] and 0.41 for [13]. The value of A re-
sulting from the fit is 22.2 x 10-2* m? s. Fig. 4 shows the
same treatment, but for data around room temperature
(T = 350 K). The upper curve represents erosion with
deuterium, the lower with hydrogen ions. Since the
calibration parameter y is close to unity (1.13 for D and
0.97 for H) here only the renormalized data are shown
for the spectroscopic data at high flux. Full symbols
represent data at 25 < Ey, < 35 eV while for the treat-
ment of data at other energies (open data points) the
energy dependence of Y., was taken into account. Both
fits (solid line) were obtained for Ey =30 eV and
T =350 K. The values of A are 5.4 x 1072 m? s for D
and 1.65 x 1072 m? s for H.

An interesting point is the dependence of A on
the erosion yield at low ion flux Y,,. Here the number
of surface radicals is close to the areal density A4 of
target atoms within the ion range and A can be written as
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Table 1
Model parameter and calibration factor y for the data sets of Figs. 3 and 4. The true error (o) is in good agreement to the estimated
error s*
(c) () (1073 m? s) () G/s Odds ratio

HCS, PSI-1, PISCES 3.05 222 0.83, 0.41 0.97 1.5

HCS, ASDEX(D) 1.93 5.42 1.13 1.0 1.1

HCS, ASDEX(H) 1.18 1.65 0.97 0.92 0.72
#The odds ratio P(M,|D,1)/P(M,|D,I) shows no strong discrimination between models M; and M,.
Table 2
Hydration time 7 as calculated from 4 and Y, at low ion flux according to Eq. (36)*

7 (1073 m? s) Yiow (Clion) 7 (1073 5)

HCS, PSI-1, PISCES 222454 0.079 £ 0.002 0.28 +0.07

HCS, ASDEX(D) 54+12 0.0335 £ 0.0008 0.16 +0.04

HCS, ASDEX(H) 1.65 £+ 0.39 0.0073 £ 0.0006 0.23+£0.06

#The mean gives T = 0.22 4 0.03.

Ylow
T.

/I:A

(36)

The values of 1 and Y, are given in Table 2 together
with the resulting hydration times 7. An areal density of
target atoms within the ion range of about 107 /cm? was
assumed. The hydration times for different surface
temperatures and different hydrogen isotopes agree well
within the error margins and therefore allow to compute
a mean of T = 0.22 + 0.03 ms. This appears rather long,
but is in good agreement with the estimate of 1 m s
obtained from [11]. o

Finally, for all sets of data (4§, 4;) estimations of the
associated (s,S;) were provided by the experimentalists.
After the evaluation of the posterior errors employing
(28) it is possible to compare them to the initial proba-
bility assignment. The posterior error distribution is
shown as the histogram in Fig. 1. Of course, by design
the average value of the histogram is the same as for the
continuous curve namely 1. However, also the initial
choice of an infinite variance (17) seems to be corrobo-
rated by the data.

7. Conclusion

The evaluation of the rather limited data at high ion
flux reveals indeed, that a strong flux dependence sets in
around ion flux of the order of 10*'-10?2/m> s. The
confidence level of the fit of the model to the data is
within 30% for recalibration parameters only marginally
deviating from unity. Only one data set [13] required a
renormalization by a factor of 0.41, but data points at
the highest flux may alternatively indicate an additional,
flux independent erosion mechanism which was not
considered here. The discussion of the dependence of the
values of 1 on the erosion yield at low ion fluxes resulted

in a hydration constant of 0.22 m s independent on
surface temperature or hydrogen isotope.
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